Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jeffrey Lawson and William T. A. Harrison*

Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland

Correspondence e-mail:
w.harrison@abdn.ac.uk

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{N}-\mathrm{C})=0.004 \AA$
R factor $=0.047$
$w R$ factor $=0.101$
Data-to-parameter ratio $=23.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Diaquabis(biuretato- $\kappa^{2} O, O^{\prime}$)nickel(II) dichloride

The title compound, $\left[\mathrm{Ni}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{Cl}_{2}$, contains Ni^{2+} cations octahedrally coordinated by two bidentate biuret molecules in an O, O^{\prime}-bidentate coordination mode and two water molecules, the latter in a trans configuration. Two chloride anions provide charge compensation. Numerous $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ (mean $\mathrm{H} \cdots \mathrm{O}=2.17 \AA$, mean $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=164^{\circ}$ and mean $\mathrm{N} \cdots \mathrm{O}=2.991 \AA$), $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}($ mean $\mathrm{H} \cdots \mathrm{Cl}=2.46 \AA$, mean $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}=162^{\circ}$ and mean $\mathrm{N} \cdots \mathrm{Cl}=3.278 \AA$) and $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{Cl}$ (mean $\mathrm{H} \cdots \mathrm{Cl}=2.19 \AA$, mean $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}=159^{\circ}$ and mean $\mathrm{O} \cdots \mathrm{Cl}=3.068 \AA$) hydrogen bonds help to stabilize the crystal packing.

Comment

Biuret, $\mathrm{H}_{2} \mathrm{~N}-\mathrm{CO}-\mathrm{NH}-\mathrm{CO}-\mathrm{NH}_{2}\left(\right.$ or $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{2}$), has long been recognized as a ligand in coordination chemistry (Wiedemann, 1848). In low-pH or neutral conditions, biuret commonly shows O, O^{\prime}-bidentate coordination to metal cations [e.g. with zinc (Nardelli et al., 1963), copper (Freeman \& Smith, 1966) or samarium (Haddad, 1987)]. When biuret is deprotonated in basic conditions, N, N^{\prime}-bidentate coordination can arise [e.g. with copper (Pajunen \& Pajunen, 1982)].

(I)

In the present paper, we report the synthesis and structure of a nickel(II) complex of biuret, viz. $\left[\mathrm{Ni}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{2}\right)_{2^{-}}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{Cl}_{2}$, (I) (Fig. 1). Compound (I) contains Ni^{2+} cations coordinated by two distinct biuret molecules, in O, O^{\prime}-bidentate mode (thus forming six-membered chelate rings), and two trans water molecules. The structure is completed by two uncoordinated chloride ions, which provide charge balance and participate in an extensive hydrogen-bond network (see below). The resulting NiO_{6} moiety of the $\left[\mathrm{Ni}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right.\right.$ $\left.\left.\mathrm{N}_{3} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$ grouping (Table 1) is close to being an undistorted octahedron $[\mathrm{Ni}-\mathrm{O}=2.014$ (2)-2.083 (2) \AA, mean

Received 3 February 2005
Accepted 8 February 2005 Online 12 February 2005

Figure 1
Asymmetric unit of (I), showing 50\% probability displacement ellipsoids. H atoms are drawn as small spheres of arbitrary radii and the hydrogen bond is indicated by dashed lines.

Figure 2
Detail of (I), showing how the $\mathrm{N} 3-\mathrm{H} 4 \cdots \mathrm{O}^{\text {iii }}$ and $\mathrm{N} 4-\mathrm{H} 6 \cdots \mathrm{O} 2^{\text {iv }}$ hydrogen bonds (dashed lines; see Table 2 for symmetry codes) link the $\left[\mathrm{Ni}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$ groupings into an infinite chain propagating along [100].
$\mathrm{Ni}-\mathrm{O}=2.041(3) \AA$; cis and trans $\mathrm{O}-\mathrm{Ni}-\mathrm{O}=87.47$ (9)93.51 (8) ${ }^{\circ}$ and 176.14 (9)-178.94 (8) ${ }^{\circ}$, respectively], indicating that the nickel(II) cation is a good 'fit' for the biuret O, O^{\prime} bite angle. The two biuret molecules in (I) can be broken down into two $\mathrm{H}_{2} \mathrm{~N}-\mathrm{CO}-\mathrm{NH}$ fragments, fused via the central HN group [i.e. via atoms N 2 and N 5 in (I)]. For the non-H atoms, the four $\mathrm{H}_{2} \mathrm{~N}-\mathrm{CO}-\mathrm{NH}$ fragments are all essentially planar (for $\mathrm{C} 1 / \mathrm{O} 1 / \mathrm{N} 1 / \mathrm{N} 2$, r.m.s. deviation from the least-squares plane $=0.0021 \AA$; for $\mathrm{C} 2 / \mathrm{O} 2 / \mathrm{N} 2 / \mathrm{N} 3,0.0017 \AA$; for $\mathrm{C} 3 / \mathrm{O} 3 / \mathrm{N} 4 /$ N5, $0.0023 \AA$; for C4/O4/N5/N6, $0.0032 \AA$). The dihedral angle between the C1- and C2-containing fragments is $4.8(3)^{\circ}$, with a corresponding value of $3.19(3)^{\circ}$ for the C3 and C4 fragments. This configuration can be compared with a twist angle between the fused $\mathrm{H}_{2} \mathrm{~N}-\mathrm{CO}-\mathrm{NH}$ fragments of 6.35° in $\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{2}\right)_{2}\right] \mathrm{Cl}_{2}$ (Freeman \& Smith, 1966). The dihedral angle between mean planes of the two biuret ligand molecules in (I) is $1.90(13)^{\circ}$.

The Ni atom in (I) is slightly displaced from the leastsquares plane of the approximate square of biuret O atoms (O1-O4) coordinating to it, by 0.0086 (13) \AA. The biuret O_{4} square itself is slightly folded, with deviations from the O1-O4 mean plane of -0.0121 (12), 0.0119 (12), 0.0121 (12) and

Figure 3
Projection on to (100) of (I), showing the hydrogen-bond cross-linking (dashed lines) between the chains shown in Fig. 2.
-0.0119 (12) \AA for atoms O1, O2, O3 and O4, respectively. In the copper analogue (Freeman \& Smith, 1966), the CuO_{4} square is constrained by space-group symmetry to be perfectly flat. Overall, the $\left[\mathrm{Ni}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{2}\right)_{2}\right]^{2+}$ grouping in (I) is close to planar [r.m.s. deviation from the mean plane $=0.030 \AA$; maximum deviation $=0.076(3) \AA$ for N 2$]$, whereas the $\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{2}\right)_{2}\right]^{2+}$ grouping in $\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{2}\right)_{2}\right] \mathrm{Cl}_{2}$ is distinctly puckered (Freeman \& Smith, 1966) about the $\mathrm{O} \cdots \mathrm{O}^{\prime}$ axes (bite lines) of the biuret molecules. As well as electrostatic and van der Waals forces, numerous hydrogen bonds (Table 2) help to define the crystal packing in (I). These include $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ bonds (mean $\mathrm{H} \cdots \mathrm{O}=2.17 \AA$, mean $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}=164^{\circ}$ and mean $\mathrm{N} \cdots \mathrm{O}=2.991 \AA$) to O acceptors from both the biuret and the water ligands, $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ interactions (mean $\mathrm{H} \cdots \mathrm{Cl}=2.46 \AA$, mean $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}=162^{\circ}$ and mean $\mathrm{N} \cdots \mathrm{Cl}=3.278 \AA$) and $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ interactions (mean $\mathrm{H} \cdots \mathrm{Cl}=$ $2.19 \AA$, mean $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}=159^{\circ}$ and mean $\mathrm{O} \cdots \mathrm{Cl}=3.068 \AA$).

Perhaps the most interesting hydrogen bonds are N3$\mathrm{H} 4 \cdots \mathrm{O} 3^{\text {iii }}$ and $\mathrm{N} 4-\mathrm{H} 6 \cdots \mathrm{O} 2^{\text {iv }}$ (see Fig. 2 and Table 2 for symmetry information), which link the $\left[\mathrm{Ni}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{2}\right)_{2^{-}}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$ groupings into a chain propagating along [100]. The supramolecular (Bernstein et al., 1995) motif is an $R_{2}^{2}(8)$ ring. The remaining H bonds serve to crosslink the [100] chains into a three-dimensional network (Fig. 3) via the chloride ions. Overall, Cl1 and Cl2 accept five hydrogen bonds each.

Experimental

Aqueous solutions of NiCl_{2} and biuret (both 0.1 M) were mixed in a 1:1 ratio at room temperature, resulting in a green solution. Small block-like green crystals of (I) grew over the course of a few days as the water slowly evaporated and were harvested by vacuum filtration and washing with acetone.

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{Cl}_{2}$
$M_{r}=371.82$
Monoclinic, $P 2_{1} / c$
$a=7.3872(4) \AA$
$b=27.5675(16) \AA$
$c=7.6687(4) \AA$
$\beta=117.344(1)^{\circ}$
$V=1387.21(13) \AA^{3}$
$Z=4$

Data collection

Bruker SMART 1000 CCD diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Bruker, 1999)
$T_{\text {min }}=0.773, T_{\text {max }}=0.839$
14042 measured reflections
$D_{x}=1.780 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3015
\quad reflections
$\theta=3.0-29.5^{\circ}$
$\mu=1.82 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Block, green
$0.15 \times 0.12 \times 0.10 \mathrm{~mm}$

4037 independent reflections 2416 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.053$
$\theta_{\text {max }}=30.0^{\circ}$
$h=-10 \rightarrow 8$
$k=-38 \rightarrow 38$
$l=-9 \rightarrow 10$

Refinement

Refinement on F^{2}

> H-atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0438 P)^{2}\right]$
> where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=0.76 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.35 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

Ni1-O3	$2.014(2)$	Ni1-O1	$2.024(2)$
Ni1-O2	$2.018(2)$	Ni1-O6	$2.080(2)$
Ni1-O4	$2.024(2)$	Ni1-O5	$2.083(2)$
	$-5.1(6)$	O4-C4-N5-C3	$4.3(6)$
O1-C1-N2-C2	$6.7(6)$	O3-C3-N5-C4	$-3.3(6)$
O2-C2-N2-C1			

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{Cl} 2^{\mathrm{i}}$	0.86	2.49	3.340 (3)	173
$\mathrm{N} 1-\mathrm{H} 2 \cdots \mathrm{O} 5^{\text {ii }}$	0.86	2.33	3.089 (4)	147
$\mathrm{N} 2-\mathrm{H} 3 \cdots \mathrm{Cl} 2^{\text {ii }}$	0.86	2.45	3.266 (3)	158
$\mathrm{N} 3-\mathrm{H} 4 \cdots \mathrm{O} 3^{\text {iii }}$	0.86	2.10	2.943 (4)	168
$\mathrm{N} 3-\mathrm{H} 5 \cdots \mathrm{Cl} 2^{\text {ii }}$	0.86	2.43	3.239 (3)	158
$\mathrm{N} 4-\mathrm{H} 6 \cdots \mathrm{O} 2^{\text {iv }}$	0.86	2.06	2.910 (4)	168
$\mathrm{N} 4-\mathrm{H} 7 \cdots \mathrm{Cl} 1^{v}$	0.86	2.45	3.252 (3)	155
$\mathrm{N} 5-\mathrm{H} 8 \cdots \mathrm{Cl} 1^{v}$	0.86	2.51	3.310 (3)	156
N6-H9 . . $\mathrm{Cl}^{\text {vi }}$	0.86	2.41	3.259 (3)	169
N6-H10 $\cdots \mathrm{O}^{\text {vii }}$	0.86	2.17	3.023 (3)	173
$\mathrm{O} 5-\mathrm{H} 11 \cdots \mathrm{Cl} 2$	0.94	2.16	3.068 (2)	161
$\mathrm{O} 5-\mathrm{H} 12 \cdots \mathrm{Cl} 1^{\text {iii }}$	0.91	2.21	3.115 (2)	171
$\mathrm{O} 6-\mathrm{H} 13 \cdots \mathrm{Cl} 2^{\text {viii }}$	0.98	2.18	3.060 (2)	149
O6-H14 $\cdots \mathrm{Cl}^{\text {viii }}$	0.88	2.20	3.027 (2)	155

Symmetry codes: (i) $-x+1,-y,-z+1$; (ii) $-x+2,-y,-z+1$; (iii) $x+1, y, z$; (iv) $x-1, y, z$; (v) $x,-y+\frac{1}{2}, z-\frac{1}{2} ;$ (vi) $x+1,-y+\frac{1}{2}, z-\frac{1}{2}$; (vii) $x,-y+\frac{1}{2}, z+\frac{1}{2}$; (viii) $x, y, z-1$.

The water H atoms were found in difference maps and were refined as riding on their carrier atoms in their as-found relative positions. The N -bound H atoms were placed in calculated positions assuming $s p^{2}$ hybridization for the N atoms and refined as riding on their carrier atoms. The constraint $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (carrier atom) was applied in all cases.

Data collection: SMART (Bruker, 1999); cell refinement: SAINTPlus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (1999). SMART (Version 5.624), SAINT-Plus (Version 6.02a) and $S A D A B S$. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Freeman, H. C. \& Smith, J. E. W. L. (1966). Acta Cryst. 20, 153-159.
Haddad, S. F. (1987). Acta Cryst. C43, 1882-1885.
Nardelli, M., Faca, G. \& Giraldi, G. (1963). Acta Cryst. 16, 343-352.
Pajunen, A. \& Pajunen, S. (1982). Acta Cryst. B38, 1586-1588.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Wiedemann, G. (1848). Ann. Chem. 68, 324-330.

